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1. Introduction

The Skyrme model is a three-dimensional field theory with topological soliton solutions,

which is believed to provide a good model of nuclear physics; the topological solitons

(skyrmions) are identified with baryons. In this paper we investigate skyrmion chains,

in other words topological solutions which are periodic (or quasi-periodic) in one of the

spatial directions.

Isolated skyrmions have been well-studied, up to relatively high charge [1]. Multiply-

periodic configurations have also been considered, for example a “Skyrme domain wall”

solution (doubly-periodic) [2], and a “Skyrme crystal” (triply-periodic) [3 – 5]. Singly-

periodic chains were studied in the early days of the Skyrme model [6], but have since been

neglected. There have also been studies of cylindrically-symmetric Skyrme strings [7, 8],

but these are topologically trivial.

The field equations of the Skyrme model are non-linear, and no exact analytic solutions

are known; so the only direct means of studying solutions is by numerical simulation.

Since the system is three-dimensional, numerical methods are not fast. The most direct

means of simplifying the numerics is to impose continuous symmetries on the field — this

approach was used to study chains in [6]. However, if one wishes to study less symmetric

fields, a number of alternative methods are known: these typically involve a relatively

simple approximation, which is empirically observed to approximate the true (numerically-

determined) behaviour of the solutions. The three most prominent ansätze of this type

are the product ansatz (see for example [9]), the Atiyah-Manton construction [10], and the

rational map ansatz [11]. We have been able to adapt the first two to study chains, but

the rational map ansatz appears unsuited to this task.
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The plan of the paper is as follows. Section 2 contains a discussion of the topology

of skyrmion chains; section 3 has results on adapting the Atiyah-Manton construction

to obtain approximate skyrmion chains from Yang-Mills calorons; section 4 discusses the

approximation of skyrmion chains in terms of parallel vortex-antivortex pairs; and section

5 contains some full 3-dimensional numerical results.

We show that there is a 1-skyrmion chain with a preferred period (the period which

minimizes the energy-per-period of the chain), and that the caloron-generated field is a good

approximation to this solution. The vortex-antivortex pair is not as good, but becomes

more accurate for denser (lower-period) chains. Generally speaking, a chain of 1-skyrmions

is stable close to its preferred period, but unstable for larger periods, in the sense that

the individual 1-skyrmions tend to clump into higher-charge skyrmions. We give some

numerical results which illustrate this, in particular showing the appearance of chains of

2-skyrmions and of 4-skyrmions.

2. The Skyrme model and chains

The static Skyrme field U is defined on R
3, and takes values in SU(2). Defining Li =

U−1∂U/∂xi, we take the energy density of U to be

E := −
1

2
Tr(LiLi) −

1

16
Tr([Li, Lj ][Li, Lj ]); (2.1)

and the normalized energy of U on R
3 is

E :=
1

12π2

∫

R3

Edx1dx2dx3. (2.2)

The boundary condition at spatial infinity is U → 1 as r → ∞, where 1 denotes the identity

element of SU(2). So topologically, a Skyrme field defines a map S3 → SU(2), and such a

map has a degree B ∈ Z. This topological charge can be computed by the integral

B =

∫

R3

B dx1 dx2 dx3, (2.3)

where

B =
1

24π2
ǫijkTr(LiLjLk) (2.4)

is the topological charge density. The energy (2.2) satisfies the topological lower bound

E ≥ B. Finite-energy fields U which locally minimize E will be called skyrmions. The

symmetry group of the system (including the boundary condition) consists of the spatial

translations, the spatial rotations O(3)sp, and the iso-rotations O(3)iso.

A Skyrme chain with period β > 0 and relative orientation R ∈ SO(3)iso is a finite-

energy Skyrme field U : R
3 → SU(2) satisfying

U(x, y, z + β) = R · U(x, y, z), (2.5)

minimizing the energy functional

E =

∫ β

0

∫

R2

Edx dy dz,
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and satisfying the boundary condition U → 1 as x2+y2 → ∞. One may think of such a con-

figuration as a chain of equally-spaced skyrmions along the z-axis, with each skyrmion being

iso-rotated by R relative to its neighbours. In the appendix, it is shown that the quantity

B =

∫ β

0

∫

R2

B dx dy dz

is necessarily an integer, and this integer is called the topological charge of the chain. (If

R is the identity, then it is already clear that B is an integer, since then the field U is in

effect a map from S2 × S1 to SU(2), and B is the degree of this map.)

A single skyrmion has the spherically-symmetric hedgehog form U(x) =

exp
{

if(r)x̂jσj
}

, where σj denotes the Pauli matrices. Consequently, the iso-rotations

R ∈ SO(3)iso of a single skyrmion may be identified with the spatial rotations, and we may

think of the relative orientation of two skyrmions as being a relative orientation in physical

space. If we have two well-separated 1-skyrmions, then it is well-known [9] that the force

between them depends on this relative orientation:

• If the two skyrmions have the same orientation, then they repel. This case is called

aligned.

• The strongest repulsive force occurs when one of the skyrmions is rotated by π about

the line l joining them. This case is called the repulsive channel.

• The strongest attractive force occurs when one of the skyrmions is rotated by π

about an axis perpendicular to l. This case is called the attractive channel.

The symmetry of such a 2-skyrmion configuration can be inferred from the dipole model of

skyrmions [12], or equivalently by looking at a superposition of hedgehog configurations. A

pair of skyrmions which are aligned, or in the repulsive channel, has an axial symmetry O(2)

(consisting of rotations and reflections which fix l); but a pair in the attractive channel has

only a discrete symmetry group D2 (generated by reflections in two perpendicular planes

whose intersection is l).

Guided by this, we define three types of unit-charge skyrmion chain as follows. Writing

U(x) = exp {w(x)}, where w takes values in the Lie algebra su(2), we may regard the

relative orientation operator R defined in (2.5) as acting on w(x) via the adjoint action.

Suppose that along the z-axis, w has the form w = g(z)v, where v is a fixed element of the

Lie algebra su(2), and g(z) is a real-valued function. We then identify the following three

special cases:

• A chain with R = 1 is called aligned.

• A chain for which R is a rotation by π about v ∈ su(2), is called maximally-repulsive.

• A chain for which R is a rotation by π about an axis perpendicular to v ∈ su(2) is

called maximally-attractive.
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As before, the maximally-attractive chain has only a discrete symmetry, whereas the other

two have a continuous axial symmetry. We expect that only the maximally-attractive chain

will have an energy less than that of an isolated skyrmion, and it is this type that we shall

concentrate on in what follows.

3. Skyrme chains from calorons

The Atiyah-Manton ansatz is method of generating approximate skyrmion configurations

on R
3 by evaluating the holonomy of 4-dimensional Yang-Mills instantons. The construc-

tion is topologically natural, in the sense that the holonomy of an N -instanton is an N -

skyrmion; and for an appropriate choice of the instanton scale, the resulting skyrmion field

is a surprisingly good approximation to the actual skyrmion.

The method involves evaluating the holonomy of the gauge field along a family of

parallel lines in the 4-dimensional space. For example, we could choose the family of lines

parallel to the x0-axis in R
4, and then the Skyrme field is obtained via the path-ordered

exponential integral

U(x1, x2, x3) = P exp

(
∫ ∞

−∞

A0(x)dx
0

)

.

In one periodic version of this construction which has been studied previously, it was

shown that one may obtain a good approximation to the Skyrme crystal from instantons

on the 4-torus [13].

If we want to obtain a Skyrme chain, then we should start with a gauge field on

S1 × R
3 satisfying

Aµ(x0 + β, x1, x2, x3) = R · Aµ(x0, x1, x2, x3), (3.1)

and integrate along a family of parallel lines perpendicular to the x0-axis. Calorons

provide examples of gauge fields satisfying (3.1). Let Aν be the gauge potential of a

caloron, strictly-periodic with period β, with instanton charge equal to 1, and with

vanishing monopole charge (see [14, 15] for details). So near infinity, A0 does not wind,

and has the form A0 ≈ iµσ3, where 0 ≤ µ ≤ π/β. Now make the gauge transformation

A′
ν = gAνg

−1 − (∂νg)g
−1, where g = exp(iµx0σ3). In the new gauge, A′

0 → 0 at infinity,

and the gauge field is no longer strictly-periodic, but satisfies

A′
ν(x

0 + β, x1, x2, x3) = hAν(x0, x1, x2, x3)h−1,

where h = exp(iµβσ3). This gauge choice is known as the algebraic gauge. We can obtain

1-skyrmion chain configurations by computing the holonomies of such calorons in the

algebraic gauge. Analytic expressions are known for all calorons with unit instanton charge

and vanishing monopole charge [16, 17]; so it is feasible to study Skyrme chains using this

family. Since we are mainly interested in maximally-attractive chains, we restrict attention

to the calorons which yield R2 = 1 but R 6= 1; these are the calorons with µ = π/2β. By

contrast, calorons with µ = 0, such as the Harrington-Shepard calorons [18], give rise to

aligned chains.
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ρ 12π2E2 12π2E4 B − 1

0.2 10.56 509.2 2.0 × 10−4

0.3 16.61 314.3 1.6 × 10−4

0.4 23.20 213.7 1.1 × 10−4

0.5 29.68 160.4 7.7 × 10−5

0.6 35.40 135.4 6.3 × 10−5

0.7 40.21 124.6 9.3 × 10−5

0.8 44.25 119.6 1.9 × 10−4

Table 1: Caloron approximation

The calorons we are interested in are symmetric under rotations about an axis in R
3.

If we choose to evaluate holonomies along lines parallel to this axis, the Skyrme chains will

also have an SO(2) symmetry: these will be maximally-repulsive chains. If, on the other

hand, we evaluate holonomies along lines perpendicular to the symmetry axis, we obtain

maximally-attractive chains.

We have implemented the Atiyah-Manton construction for maximally-attractive chains

numerically, and evaluated the energies of the resulting skyrmion chains. The family of

calorons we used is parametrized by a scale parameter ρ and a period β. The caloron

with scale ρ and period β is in fact a rescaling of the caloron with scale ρ/β and period

1, and since the components of the Skyrme energy behave simply under rescalings, it was

sufficient only to consider calorons with fixed β = 1 and a range of values of ρ.

The holonomies were evaluated using the Runge-Kutta method. We evaluated energies

in a finite box −L ≤ x, y ≤ L, and extrapolated in both the box size and the lattice spacing

to obtain energies accurate to within 0.1%. We also calculated B to check the accuracy of

our method. Our results are summarized in table 1.

In figure 1(a), we have plotted the minimum energy of this approximate skyrmion

chain, as a function of the period β. The graph was obtained by interpolating the data in

table 1 to obtain E2 and E4 as polynomial functions of ρ, and then minimizing the energy

E = E2β + E4/β with respect to variation in ρ. In particular, we see that the energy of

these caloron-derived configurations has its lowest value E ≈ 1.16 for period β ≈ 2.1.

4. The vortex ansatz

In this section we describe an alternative ansatz for chains, which is based on the idea that

a chain, especially for small period, splits into constituents. We define a Skyrme vortex to

be a field of the form

Uv = exp

[

1

2
(θ − νz)iσ3

]

exp
[

f(r)iσ1
]

exp

[

1

2
(θ + νz)iσ3

]

, (4.1)

where (r, θ) are polar coordinates in R
2, and ν is a positive constant. The profile function

f(r) is required to satisfy the boundary conditions f(0) = π/2 and f(r) → 0 as r → ∞.
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Figure 1: The energy of a 1-skyrmion chain, versus the period β, for the caloron construction

(solid curve in (a) and (b)), the vortex ansatz (dashed curve in (a)), and from a full 3D calculation

(dot-dash curve in (b)).

Note that Uv is smooth on R
3, and periodic in z with period 2π/ν. The energy density

of Uv is

E = (f ′)2 +
cos2 f

r2
+ ν2 sin2 f + (f ′)2

cos2 f

r2
+ (f ′)2ν2 sin2 f +

ν2 sin2 f cos2 f

r2
. (4.2)

The profile function f(r) is chosen to solve the Euler-Lagrange equation for
∫ ∞

0 Er dr. But

note, for example from the second term in E , that Uv has infinite energy per unit period.

This is a consequence of the fact that Uv has the non-constant form

Uv ≈ exp(iθσ3) (4.3)

as r → ∞. The Skyrme vortex (4.1) has been used before, in a different context [19]:

constructing vortex loops by taking finite lengths of Skyrme vortex and joining

their ends together.

Notice that the field U(x, y, z) = Uv(x,−y,−z) winds in the opposite direction to Uv

at infinity. So we can obtain a field which is constant at infinity by taking a superposition

of two vortices via the product ansatz

U = U1U2

with U1(x, y, z) = Uv(x− a, y, z) and U2(x, y, z) = Uv(x+ a,−y,−z), where a is a positive

constant. We can obtain a similar, but more symmetric, field by using the relativized

product ansatz [20]

U = (U1U2 + U2U1)/
√

(det(U1U2 + U2U1).

The superposition satisfies the boundary conditions of a maximally-attractive chain with

period β = π/ν and R = diag(−1,−1, 1) ∈ SO(3), and has the same symmetries. The
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field resembles a pair of parallel vortices separated by a distance 2a, and its topological

charge is 1.

When the separation 2a of the vortices is large, they attract each other, as the following

heuristic argument shows. Let C > 0 be sufficiently large for the approximation (4.3) to

be valid for r > C, and let a be larger than C. We can evaluate the energy of the

superposition by splitting R
2 into three regions: the two discs of radius C centred on the

vortex locations, and the exterior. The energy within each disc tends to a constant as a

tends to infinity. The energy in the exterior diverges as a → ∞; a calculation shows that

the leading contribution at large a is 4πβ ln a. So one can reduce the energy by reducing

the separation 2a, as claimed.

So far we have not justified our choice of superposition procedure: it is important

to ask whether there is another way to superpose two vortices to obtain a lower energy.

Again, we have a heuristic argument why our superposition is the right thing to do, at

least for large separation. Let F denote the exterior of the two discs D1, D2 of radius C

and centres (x, y) = (±a, 0), as before. Let ψ : F → U(1) be a map such that ψ|∂D1
has

winding number 1 and ψ|∂D2
has winding number −1. We want to minimize the energy

e = β

∫

F

‖ψ−1dψ‖2d2x.

The ansatz used above corresponds to taking ψ = exp[i(θ1 − θ2)], where θ1(x, y) is the

angle between (x−a, y) and the x-axis, and θ2(x, y) is the angle between (x+a, y) and the

x-axis. If the energy of this field is close to the true minimum, then we know our ansatz

is a good one. Notice that the Skyrme term has disappeared from our energy functional;

this is because the Skyrme term evaluates to zero for any U(1) field. The easiest way to

find the minimum energy is to stereographically project from R
2 to S2; the energy e is

conformally-invariant, so we are allowed to do this. The stereographic projection can be

chosen so that the two circles are described by θ = α and θ = π−α in spherical coordinates

θ ∈ [0, π], φ ∈ [0, 2π), where sin(α) = C/a. The energy functional is now written as

e = β

∫ 2π

0

∫ π−α

α

(

(ψ−1∂θψ)2 + sin−2 θ(ψ−1∂φψ)2
)

sin θ dθ dφ.

A Bogomolny argument shows that this energy is minimized by ψ(θ, φ) = exp(iφ); and

the minimum energy is 4πβ ln cot(α/2). For large a, this agrees with our superposition, to

leading order.

We have evaluated the energy of the superposition of two vortices for a range of values

of β and a. The energies were evaluated in a finite box, and we extrapolated in the box size

and the lattice spacing to obtain results accurate to within 0.1%. We tried using both the

product ansatz and the relativized product ansatz, and found that the energies obtained

agreed. We also evaluated the topological charge B as a check on our methods. Table 2

shows the minimum energy of the superposition, together with the value of a for which

this energy is attained. The energy is plotted, as a function of the period β, in figure 1(a).
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β 12π2E a B − 1

1.0 157.9 1.13 5.4 × 10−4

1.1 153.1 1.15 3.4 × 10−4

1.2 149.6 1.16 3.1 × 10−4

1.3 147.1 1.18 2.1 × 10−4

1.4 145.2 1.20 2.0 × 10−4

1.5 144.0 1.21 1.5 × 10−4

1.6 143.2 1.22 1.5 × 10−4

1.7 142.8 1.23 1.2 × 10−4

1.8 142.6 1.24 1.1 × 10−4

1.9 142.8 1.24 9 × 10−5

2.0 143.1 1.25 9 × 10−5

Table 2: Vortex approximation

5. Numerical minimization

In order to assess the approximation schemes of the previous two sections, and also to

investigate the stability of the maximally-attracting 1-skyrmion chain, we implemented a

full 3-dimensional numerical minimization of the energy E. The method involved a first-

order finite-difference scheme for E, with the spatial points (x, y, z) being represented by a

rectangular lattice having lattice spacing h. The boundary condition U = 1 was imposed

at |x| = L, |y| = L. The energy was minimized using a conjugate-gradient method. The

errors in E as a result of the finite lattice spacing h and finite size L go like h2 and 1/L2

respectively, and we obtained the h → 0, L → ∞ limits by extrapolation. The resulting

values for E have an error less than 0.05%.

The first simulation looked at the maximally-attractive 1-skyrmion chain, for each of

the periods β = 1.9, 2.0, 2.05, 2.1 (since all the indications are that the preferred period

βmin is close to 2). The results are plotted in figure 1(b), together with a parabola fitted

to the resulting four points; we see that the preferred period is βmin = 1.98, and that the

minimal energy is Emin = 1.143. The minimal configuration with period β = 2 (essentially

the preferred period) is depicted in the upper row of figure 2, plotted over two periods.

Subfigure (a) plots the function σ = 1
2 tr(U), or rather the surface σ(x) = 0; subfigure (b)

plots the charge density B, or rather the surface B(x) = 0.2×maxB. The same two quanti-

ties are plotted for the field derived from the caloron construction, in subfigures (c) and (d);

and for the field derived from the vortex ansatz, in subfigures (e) and (f). We see that

the approximate fields are qualitatively similar to the actual solution, although there are

noticeable differences.

For large period, we would expect the maximally-attractive 1-skyrmion chain to be

unstable to clumping, for the same reason that a finite collection of separated 1-skyrmions

will clump together. For small period, however, the 1-skyrmion chain might be stable.

To investigate this, we first looked at the periodic 2-skyrmion chain, where the initial

– 8 –
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Figure 2: The field component σ and the charge density B for the 1-skyrmion chain with period

β = 2: the numerical minimum, the caloron approximation and the vortex approximation.

configuration was taken to be (a deformation of) a pair of skyrmions on the z-axis, in

the attractive channel. As before, the numerical simulation involved flowing down the

energy gradient, to reach a local minimum. For period β = 4, the minimum is a pair of

single skyrmions, leaving open the possiblity that the 1-skyrmion chain with period β = 2

might be stable (more on this below). But for period β = 5, the minimum is a toroidal

2-skyrmion (with axis orthogonal to the z-axis), which forms by coalescence of the two

– 9 –
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individual skyrmions; so the 1-skyrmion chain with period β = 2.5 is not a stable solution.

The instability which leads to this coalescence is rather weak: in fact, the energy of the

toroidal chain with period β = 5 is only slightly (0.1%) less than twice the energy of a

1-skyrmion chain with period 2.5.

One can repeat this sort of investigation, looking at skyrmion chains with higher charge.

There is evidence suggesting that a 4-skyrmion chain (chain of α-particles) might be partic-

ularly favourable: finite-length chains of α-particles occur in R
3, at least when one modifies

the system by adding a significant pion mass [21 – 23]. To further investigate the stability

of the 1-skyrmion chain, we looked at the periodic 4-skyrmion chain with period β = 8,

where the initial configuration was taken to be the 1-skyrmion chain over four periods,

deformed by (i) moving the four skyrmions slightly towards one another, (ii) moving each

of them slightly off the z-axis (in different directions), and (iii) adding a random perturba-

tion to the field. Minimizing from this starting-point yielded the original 1-skyrmion chain.

We hypothesize, therefore, that the 1-skyrmion chain with its preferred period is a stable

solution — in other words, a local minimum of the static energy functional. The results of

our numerical simulations are consistent with this, but do not, of course, prove it.

The local minimum referred to in the previous paragraph is certainly not a global

minimum. This can, for example, be seen by using a different initial configuration, designed

to favour a chain of α-particles. For this final simulation, we used a periodicity condition

which amounts to rotating neighbouring α-particles by π about the periodic axis [23]; this is

of the form (2.5) with R2 = 1 and R 6= 1. (For well-separated α-particles, as in figure 3(a),

imposing strict periodicity makes very little difference). The α-particle chain with period

β = 8 has has significantly (4%) lower energy than four times the energy of a 1-skyrmion

with period 2; the plot of its charge density in figure 3(a) shows that, for this value of the

period, the α-particles are quite well localized. One can lower its energy even further by

reducing the period, and so allowing the α-particles to move closer together: in figure 3(b),

we see the α-particle chain with period β = 3, and its energy is 6% lower than the minimal

value (E = 1.143) for a 1-skyrmion chain. The likelihood is that, for any given period,

there are many local minima of the energy, corresponding to B-skyrmion chains for various

values of the topological charge B.

6. Concluding remarks

From figures 1 and 2 we see that the Atiyah-Manton construction gives a reasonably good

approximation to the minimal-energy 1-skyrmion chain, with energy only 1% above its true

value. The vortex-antivortex approximation is not quite as good, but does emphasize the

constituent structure of skyrmion chains. It appears to be a common feature of topological

soliton systems that soliton chains exhibit a constituent structure when the soliton size

is comparable to the period: the solitons fragment into fractional-charge objects, and this

fragmentation occurs in a transverse direction, so that rotational symmetry about the

chain axis is lost. These features are apparent from figure 2(b), where one sees evidence

of the parallel vortex-antivortex pair. For low-period chains (more precisely, where the

– 10 –
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Figure 3: The charge density B for 4-skyrmion chains with periods β = 8 and β = 3, over three

periods.

period is small compared to the natural soliton size), one expects the chain to resemble a

vortex pair of this type.

The Skyrme crystal [3 – 5] has an energy-per-baryon of E = 1.036, and one could con-

struct a skyrmion chain by cutting a chain out of this crystal, in other words by truncating

it in the x- and y-directions. A very thick chain obtained in this way should have rather

low energy (becoming lower as the chain became thicker). Among thin chains (with trans-

verse size comparable to the natural soliton size), the chain of α-particles may well be

the lowest-energy solution. The preliminary calculation reported in the previous section

showed that its energy is E ≈ 1.07 for period β = 3. The chain of 1-skyrmions has a

much higher energy-per-baryon of E = 1.143, but still seems to be stable to small pertur-

bations. It would be worth making a more comprehensive study of N -skyrmion chains for

various N , for a wide range of periods β, and with various periodicity conditions; but that

will require more intensive computational effort than we have used in deriving the results

reported here.
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A. Topology of chains

In this appendix, we show that the topological charge B is an integer, even when the field

is not strictly-periodic. It is a special case of the following generalisation of the degree

theorem, which appears to be new.
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Theorem. Let Σ be an n-dimensional compact manifold without boundary, with volume

form ω, and with Hn−1(Σ) = 0 and Hn(Σ) = Z. Let M be an (n−1)-dimensional manifold

such that Hn(M × S1) = Z. Suppose that SO(2) acts on Σ and that ω is SO(2)-invariant.

Fix an element σ ∈ SO(2) and let φ : M × R → Σ be a map satisfying

φ(x, y + β) = σφ(x, y) ∀x ∈M,y ∈ R.

Then φ has an integer degree, computed by the integral

deg(φ) =
1

V ol(Σ)

∫ β

0

∫

M

φ∗ω.

Furthermore, deg(φ) is independent of the choice of SO(2)-invariant volume form ω.

Proof. The idea of the proof is simple: we deform φ to a strictly-periodic map using

the SO(2) action, and show that the integral is unchanged by this deformation. First, we

introduce some notation: we write the SO(2) action as Rs : Σ → Σ, with s ∈ R/Z ∼= SO(2).

Let X ∈ TΣ be the associated vector field. Let t0 ∈ R/Z be such that Rt0 = σ−1, and let

t(x, y) = t0y/β be a function on M × R. We define a deformation

φ̃(x, y) = Rt(x,y)(φ(x, y)), x ∈M,y ∈ R.

Then φ̃ is a strictly periodic map, hence has a degree computed by

deg(φ̃) =
1

V ol(Σ)

∫ β

0

∫

M

φ̃∗ω.

Now we show that
∫ β

0

∫

M

φ̃∗ω =

∫ β

0

∫

M

φ∗ω.

For any form θ ∈ Λ∗Σ, one can show that

φ̃∗θ = φ∗R∗
t θ + φ∗(iXR

∗
t θ) ∧ dt.

Here iX denotes the inner derivative of a form. In the particular case θ = ω, one has

R∗
tω = ω (because the volume form is SO(2)-invariant). Hence

φ̃∗ω = φ∗ω + φ∗(iXω) ∧ dt.

By Cartan’s formula, we have

LXω = iXdω + diXω,

where LX denotes the Lie derivative. We see immediately that dω = 0, because ω ∈ ΛnΣ.

On the other hand, LXω must vanish since ω is SO(2)-invariant. It follows that iXω is

closed. Since Hn−1(Σ) = 0, iXω is exact, in other words, there exists a µ ∈ Λn−2Σ such

that iXω = dµ. Therefore

φ̃∗ω = φ∗ω + φ∗(dµ) ∧ dt

= φ∗ω + d(φ∗µ ∧ dt).

– 12 –
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Integrating and applying Stoke’s theorem, we obtain

∫ β

0

∫

M

φ̃∗ω =

∫ β

0

∫

M

φ∗ω +

[
∫

M

φ∗µ ∧ dt

]β

0

.

The boundary term vanishes since t is constant on the domain of integration, so we have

the desired result.

That deg(φ) is independent of the choice of volume form follows from the corresponding

property of the classical degree. If ω′ is any other SO(2)-invariant volume form, then

∫ β

0

∫

M

φ∗ω′ =

∫ β

0

∫

M

φ̃∗ω′

=

∫ β

0

∫

M

φ̃∗ω

=

∫ β

0

∫

M

φ∗ω.
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